Differences in vertebral structure and strength of inbred female mouse strains.

نویسندگان

  • M P Akhter
  • J K Otero
  • U T Iwaniec
  • D M Cullen
  • G R Haynatzki
  • R R Recker
چکیده

This study assessed mouse strain-related differences in vertebral biomechanics and histomorphometry in inbred mice strains shown to differ in bone mineral content (BMC) and areal density (BMD) (as measured by pDEXA). Lumbar vertebrae L3 to L5 were collected from three mice strains (C3H/HeJ[C3], C57BL/6J[B6], and DBA/2J[D2], n=12/strain, 4-month-old female, 22.2 +/- 0.3g). BMC and BMD were measured in L3 and L4 using peripheral dual energy x-ray absorptiometry. The L4 vertebral body was then mechanically tested in compression to determine structural properties (ultimate/yield load, stiffness) from load-displacement curves and derive apparent material properties (ultimate/yield stress, and modulus of elasticity). L5 was processed for histomorphometric evaluation. Vertebral BMC and BMD were greater in C3 than in B6 and D2 mice. Vertebral trabecular/cancellous bone volume was smaller in C3 than in D2 and B6 mice. Trabecular bone formation rates were greater in D2 than in B6 and C3 mice. Osteoid surface was smaller in C3 mice than in B6 and D2 mice. Differences in osteoclast and mineralizing surfaces were not detected among the three mouse strains. In addition, there were no significant differences in biomechanical properties between the three strains. Despite the greatest BMC and areal BMD in C3 mice, the lack of strain-related differences in vertebral body strength data suggests that the biomechanical properties may be affected by the bone distribution and/or complex combination of cortical and cancellous bone at this site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Karyotype of NIH, C57BL/6 and Razi strains of laboratory mice (Mus musculus)

The laboratory mouse is recognized as the pre-eminent model for genetic research. Awareness of chromosomal patterns of experimental animals increases their value for a variety of different fields of study. We aimed to study mitotic chromosome preparations from NIH, C57BL/6 and Razi strains of mice, which are outbred, inbred and partially inbred laboratory mice respectively. Bone marrow cells we...

متن کامل

Variability in skeletal mass, structure, and biomechanical properties among inbred strains of rats.

The aim of this study was to assess the usefulness of the inbred rat model for studies of genetic influences on skeletal fragility. We characterized bone mass, geometry, and skeletal biomechanics in 11 inbred strains of rats. This study showed that considerable variation exists in bone structure, areal bone mineral density (aBMD), and fragility phenotypes among inbred strains of rats. Interesti...

متن کامل

Immobilization induced osteopenia is strain specific in mice

Immobilization causes rapid and massive bone loss. By comparing Botulinum Toxin A (BTX)-induced bone loss in mouse strains with different genetic backgrounds we investigated whether the genetic background had an influence on the severity of the osteopenia. Secondly, we investigated whether BTX had systemic effects on bone. Female mice from four inbred mouse strains (BALB/cJ, C57BL/6 J, DBA/2 J,...

متن کامل

Adaptation in the vertebral column: a comparative study of patterns of metameric variation in mice and men.

In this paper we examine metamerism in the vertebral column of certain mammals from the perspectives of development and adaptation. To this end we examine the patterns of metameric variation of dimensions of the neural (vertebral) canal, vertebral body and spinous process in man and inbred strains of mice. The data from inbred strains of mice indicate that variability in dimensions within a str...

متن کامل

mtDNA phylogeny and evolution of laboratory mouse strains.

Inbred mouse strains have been maintained for more than 100 years, and they are thought to be a mixture of four different mouse subspecies. Although genealogies have been established, female inbred mouse phylogenies remain unexplored. By a phylogenetic analysis of newly generated complete mitochondrial DNA sequence data in 16 strains, we show here that all common inbred strains descend from the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of musculoskeletal & neuronal interactions

دوره 4 1  شماره 

صفحات  -

تاریخ انتشار 2004